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COMMUNICATION 

SILVER TRIFLUOROMETHANESULFONATE(TRIFLATE) 

ACTIVATION OF TRICHLOROACETIMIDATES IN 

GLYCOSYLATION REACTIONS.' 

Stephen P. Douglas, Dennis M. Whitfield, and Jiri J. Krepinsky' 

Departments of Molecular and Medical Genetics and 
Medical Biophysics, and Protein Engineering Network of 

Centres of Excellence, University of Toronto, 
Toronto, Ontario, Canada M5S 1A8. 

R e c e i v e d  July 2 ,  1992 - Final  F o r m  September  2 5 ,  1992 

Chemical syntheses of biologically active oligosaccharides, glycolipids and 

glycopeptides requires efficient stereospecific glycosylation reactions? One of the most 

effective glycosylation methods involves activation of anomeric imidates, particularly 

mchloroacetimidates, by Lewis acids such as boron trifluoride etherate (BFiOEtJ, 

mmethylsilyl mfluoromethanesulfonate (TMSOTF)~ and mfluoromethanesulfonic 

anhydride? In a recent example from this laboratory, BFiOEt, has been used to promote 

the glycosylation of methyl 2,3,6-m-0-benzoyl-B-D-galactopyranoside (11)5 with 2-deoxy- 

2-phthalimido-3,4,6-tri-O-acetyl-B-D-galactopyranosyl mchloroacetimidate (I): see 

Scheme 1. The expected B1-4-linked disaccharide III was obtained in 40% yield. The 

yield was so low since both the a-anomer and a l-3-linked disaccharide were formed as 

by-products, the latter in particularly large quantities (cf. Ref. '). The 1-3 disaccharide 

could be formed from a product of acid-catalyzed 3,bmigration of the benzoyl group 

which is not surprising, considering the cis relationship of the 3,4-hydroxyl groups in 
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132 DOUGLAS, WHITFIELD, AND KREPINSKY 

Scheme 1. 

galactose.* In fact, when the glycosylation reaction was quenched before all unreacted 

alcohol was consumed, the chromatographic fraction corresponding to the starting alcohol 

I1 contained at least three different tribenzoates (as shown by NMR analysis)? Other 

promoters, ZnBr,” and TMSOTF, led to lower yields and more complicated mixtures 

than BF;OEh. 

In search for better activation of mchloroacetimidates, we presumed that the process 

of activation starts with an electrophilic attack by BFiOEt, on the imide nitrogen followed 

by nucleophilic attack by the unprotected hydroxyl oxygen to form the glycosidic bond. 

Unfortunately, BF, also has a high affinity for oxygen and can coordinate carbonyl 

oxygen atoms. The resulting complexes can lead to acyl migrations. Prevention of such 

migrations would require a promoter with a much lower affinity for oxygen than for 

nitrogen. Silver mflate, AgOTF, appears to satisfy this requirement since the silver cation 

has a higher affinity for nitrogen than for oxygen and mflate is a non-nucleophilic 

anion.“ Silver mflate has been used extensively with other glycosyl donors, in 

particular those with chloride or bromide as the leaving group.’* 

To test the validity of this hypothesis, we have examined the glycosylation of alcohol 

I1 with trichloroacetimidate I promoted by AgOTF. Indeed the desired B1-4 disaccharide 

III was isolated in yields of 80-90% accompanied with 2-3% of the a-anomer and, more 

importantly, no products of benzoyl migration were dete~ted.’~ Next, we have examined 

glycosylations with more complex synthons, which are oligosaccharide fragments of 

typical N-linked glycoproteins, such as trisaccharide trichloracetimidate IVbI4 and 

disaccharide alcohol V, see Scheme 2.’’ Although BFiOEt, catalyzed glycosylation of 
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Scheme 2. 

VIb proceeded in higher yield than with Koenigs Knorr chemistry using bromide IVa, 

the expected pentasaccharide VIa was isolated in moderate yield, mainly due to extensive 

decomposition of both the di- and trisaccharide. When AgOTF was used, the 

pentasaccharide VIa was isolated in 70% yield by simple chromatography since no 

decomposition had occurred during the reaction.I6 Similarly, glycosylation at the usually 

unreactive 0 - H  of pentasaccharide alcohol VIb with trichloroacetimidate VIIb" 

promoted by AgOTF gave &linked hexasaccharide VIII, which was isolated in 50% yield 
along with unreacted pentasaccharide VIb." No a-anomer was detected. All of our 

previous attempts to glycosylate alcohol VIb had lead to extensive if not predominant 

decomposition of VIb, and our best previous condition using bromide VIIa and AgOW 
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Scheme 3. 

in nitromethane gave VIII in 30% yield and heavily contaminated with decomposition 

products. 

Among the salts tested with higher affinity for nitrogen, anhydrous AgC10, and 

CoBr, acted as suitable promoters, but less efficiently than AgOTF. As to the mechanism 

of this reaction, the AgOTF may act as a Lewis acid by coordinating to the imidic 

nitrogen through Ag+ leading in turn to the generation of a cation-like species IX (cf. 

Scheme 3). Boron mfluoride and other Lewis acids presumably function in the same 
way. Time course glycosylation experiments with a mchloroacetimidate and BF;OEt, 

(equimolar) monitored by NMR spectrometry demonstrate that all mchloroacetimidate is 

consumed within 1 hour at room temperature. The electron-deficient species IX is formed 

more slowly in the presence of AgOTF than in the presence of BF;OEt,. Thus the 

concentration of IX is more constant and this will minimize decomposition. Moreover, 

the presence of the non-nucleophilic triflate anion as a counter-ion may slow this 

decomposition as well. 

Recently we have found that intra-molecular hydrogen bonding of the nucleophilic 

hydroxyl in glycosylation reactions can greatly diminish the reactivity of the hydroxyl by 

adding an additional energy barrier to reaction.” The cis-hydroxyls in alcohols II and 

V can readily hydrogen bond to their vicinal oxygens and the 0 -4  hydroxyl in VIb likely 

interacts with a protecting group, for instance the 0-6 ally1 ether. Lewis acids, including 

AgOTF, can break up this hydrogen bonding thus lowering the energy barrier. However, 

AgOTF in contrast to other Lewis acids is more specific for activation of the imidate 

group. Thus glycosylations with AgOTF can be performed at room temperature, 

eliminating the need for work at low temperatures (-20 to -40 “C), customary for BF, 

promoted glycosylations. 
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In summary, AgOTF is recommended as promoter for glycosylation using glycosyl 

mchloroacetimidates as glycosylating agents. 
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